ENGINEERING PSYCHOLOGY AND HUMAN PERFORMANCE

Third Edition

Christopher D. Wickens Justin G. Hollands
Engineering Psychology and Human Performance

THIRD EDITION

CHRISTOPHER D. WICKENS
University of Illinois at Champaign-Urbana

JUSTIN G. HOLLANDS
University of Idaho

Prentice Hall
Upper Saddle River, New Jersey 07458
BRIEF CONTENTS

Contents v

Preface xiii

CHAPTER 1 Introduction to Engineering Psychology and Human Performance 1
CHAPTER 2 Signal Detection, Information Theory, and Absolute Judgment 17
CHAPTER 3 Attention in Perception and Display Space 69
CHAPTER 4 Spatial Displays 119
CHAPTER 5 Navigation and Interaction in Real and Virtual Environments 158
CHAPTER 6 Language and Communications 196
CHAPTER 7 Memory and Training 241
CHAPTER 8 Decision Making 293
CHAPTER 9 Selection of Action 337
CHAPTER 10 Manual Control 386
CHAPTER 11 Attention, Time-Sharing, and Workload 439
CHAPTER 12 Stress and Human Error 480
CHAPTER 13 Complex Systems, Process Control, and Automation 513

Subject Index 557

Name Index 563
CONTENTS

Preface xiii

Chapter 1 Introduction to Engineering Psychology and Human Performance 1

Engineering Psychology and Human Factors 2
 A Brief History 3
 The Process of Human Factors Engineering 4
 Performance Measurement 9

A Model of Human Information Processing 10
Conclusion 14
References 14

Chapter 2 Signal Detection, Information Theory, and Absolute Judgment 17

Overview 17

Signal Detection Theory 18
 The Signal Detection Paradigm 18
 Setting the Response Criterion: Optimality in SDT 20
 Sensitivity 25

The ROC Curve 26
 Theoretical Representation 26
 Empirical Data 28

Applications of Signal Detection Theory 30
 Medical Diagnosis 31
 Recognition Memory and Eyewitness Testimony 32
 Industrial Inspection 34

Vigilance 34
 Vigilance Paradigms 35
Contents

Measuring Vigilance Performance 35
Factors Affecting Sensitivity Level and Sensitivity Decrement 36
Factors Affecting Response Bias Level and Bias Increment 37
Theories of Vigilance 37
Techniques to Combat the Loss of Vigilance 40
Conclusions 43

Information Theory 44
The Quantification of Information 44
Information Transmission of Discrete Signals 48
Conclusion 50

Absolute Judgment 50
Single Dimensions 51
Multidimensional Judgment 53

Transition 61
References 62

Chapter 3 Attention in Perception and Display Space 69

Overview 69

Selective Attention 70
Visual Sampling 70
Supervisory Control Sampling 71
Eye Movements in Target Search 74
Visual Search Models 77
Structured Search 81
Directing Attention 83

Parallel Processing and Divided Attention 86
Preattentive Processing and Perceptual Organization 87
Spatial Proximity 90
Applications of Object-Based Processing 94
The Proximity Compatibility Principle 97
Color Coding 100

Attention in the Auditory Modality 102
Auditory Divided Attention 103
Failure of Focused Auditory Attention 104
Practical Implications 105
Cross-Modality Attention 106

Transition 107
References 108

Chapter 4 Spatial Displays 119

Overview 119

Graphical Perception 120
Chapter 5 Navigation and Interaction in Real and Virtual Environments 158

Overview 158

Navigation and Spatial Cognition 159
 Judgments of Egomotion 159
 Navigation and Understanding of Three-Dimensional Space 164

Virtual Environments 172
 Benefits of Virtual Environments 173
 Problems for Virtual Environments 174

Visualizing Information 176
 Information and Scientific Visualization 176
 The World Wide Web 181
 Visual Momentum 184
 Conclusions 185

Transition 186

References 186

Chapter 6 Language and Communications 196

Overview 196

The Perception of Print 197
 Stages in Word Perception 197
 Top-Down Processing: Context and Redundancy 199
 Reading: From Words to Sentences 201

Applications of Unification and Top-Down Processing 203
 Unification 203
Chapter 7 Memory and Training 241

Overview 241

Working Memory 243
 Code Interference 243
 Interference in the Central Executive 246
 Matching Display With Working Memory Code 247
 Limitations of Working Memory: Duration and Capacity 248
 Interference and Confusion 252
 Running Memory 253

Expertise and Memory 255
 Expertise 255
 Expertise and Chunking 256
 Skilled Memory 256

Planning and Problem Solving 258

Situation Awareness 260

Learning and Training 261
 Development of Expertise: Learning 262
 Transfer of Training 264
 Training Techniques 270

Long-Term Memory: Representation, Organization, and Retrieval 277
 Knowledge Representation 277
Chapter 8 Decision Making 293

Overview 293
Features and Classes of Decision Making 294
An Information Processing Model of Decision Making 295
What Is “Good” Decision Making? 297
Diagnosis and Situation Awareness in Decision Making 298
 Estimating Cues: Perception 299
 Evidence Accumulation: Cue Seeking and Hypothesis Formation 301
 Attention and Cue Integration 303
 Expertise and Cue Correlation 307
 Expectations in Diagnosis: The Role of Long-term Memory 308
 Belief Changes Over Time: Anchoring, Overconfidence, and the Confirmation Bias 310
 Implications of Biases and Heuristics in Diagnoses 313
Choice of Action 314
 Certain Choice 315
 Choice Under Uncertainty: The Expected Value Model 316
 Biases and Heuristics in Uncertain Choice 318
 Risky Choices in Daily Life 323
 Strategies in Choice: The Decision Within the Decision 324
Improving Human Decision Making 326
 Training Decision Making: Practice and Debiasing 326
 Proceduralization 329
 Automation: Displays and Decision Aids 329
Transition 330
References 330

Chapter 9 Selection of Action 337

Overview 337
Variables Influencing Both Simple and Choice Reaction Time 339
 Stimulus Modality 339
 Stimulus Intensity 339
 Temporal Uncertainty 340
 Expectancy 341
Variables Influencing Only Choice Reaction Time 341
 The Information Theory Model: The Hick-Hyman Law 342
 The Speed-Accuracy Trade-off 343
Departures From Information Theory 347
 Stimulus Discriminability 348
 The Repetition Effect 348
 Response Factors 348
 Practice 349
 Executive Control 349
 Stimulus-Response Compatibility 349

Stages in Reaction Time 359
 The Subtractive Method 359
 Additive Factors Technique 361
 The Event-Related Brain Potential as an Index of Mental Chronometry 364
 The Value of Stages 365

Serial Responses 365
 The Psychological Refractory Period 367
 The Decision Complexity Advantage 369
 Pacing 371
 Response Factors 373
 Preview and Transcription 374

Transition 378
References 378

Chapter 10 Manual Control 386

Overview 386

Open-Loop Motor Skills 387
 Discrete Movement Time 387
 Motor Schema 390

Tracking of Dynamic Systems 392
 The Tracking Loop: Basic Elements 393
 Transfer Functions 395
 Human Operator Limits in Tracking 398
 Effect of System Dynamics on Tracking Performance 400
 Tracking Displays 405

Multiaxis Control 410
 Cross-Coupled and Hierarchical Systems 410
 Factors That Influence the Efficiency of Multiaxis Control 412
 Interactions 415
 Increasing Complexity 415
 Auditory Displays 416

Control Devices 417
 Manual Control 417
 Voice Control 418

Modeling the Human Operator in Manual Control 419

Transition 419
Supplement 420
 Engineering Models of Manual Control 420

Frequency-Domain Representation 420
 First- and Second-Order Lags in the Frequency Domain 422
 Operations in the Frequency and Laplace Domain 424

Models of Human Operator Tracking 425
 The Crossover Model 425
 The Optimal Control Model 428

Summary 432
References 432

Chapter 11 Attention, Time-Sharing, and Workload 439

Overview 439

Mechanisms of Time-Sharing 440
 Automaticity and Resources 440
 Resource Allocation and Switching: Strategic Control 444
 Structural Factors in Time-Sharing Efficiently 447
 Confusion and Similarity 453

Practical Implications 455
 Predicting Multiple-Task Performance 456
 Assessing Mental Workload 459
 Relationship Between Workload Measures 468
 Consequences of Workload 470

Transition 470
References 470

Chapter 12 Stress and Human Error 480

Overview 480

Stress 480
 Stress Effects on Performance 482
 Stress Component Effect 483
 Moderating Effects 489
 Stress Remediation 491
 Conclusion 492

Human Error 493
 Categories of Human Error: An Information Processing Approach 494
 Human Reliability Analysis 498
 Errors in the Organizational Context 502
 Error Remediation 505

Transition 507
References 508
Chapter 13 Complex Systems, Process Control, and Automation 513

Overview 513

Process Control 514
 Characteristics of Process Control 514
 Control Versus Diagnosis 517
 Control 518
 Abnormal Operations 525
 Fault Diagnosis 527
 Remedies to Address Abnormality Problems 529
 Conclusion 538

Automation 538
 Examples and Purposes of Automation 539
 Human Functions Replaced by Automation 540
 Automation Advantages 541
 Potential Costs of Automation 542
 Human Centered Automation 545
 Adaptive Automation 547

Summary 550

References 550

Subject Index 557

Name Index 563
PREFACE

This book was written, both the first and second editions, because of a perceived need to bridge the gap between the problems of system design and much of the excellent theoretical research in cognitive and experimental psychology and human performance. Many human-machine systems do not work as well as they could because they impose requirements on the human user that are incompatible with the way people attend, perceive, think, remember, decide, and act, that is, the way in which people perform or process information. Over the past five decades, tremendous strides have been made in understanding and modeling human information processing and human performance. Our goal is to show how these theoretical advances have been, or might be, applied to improving human-machine interactions.

Although engineers encountering system design problems may find some answers or guidelines either implicitly or explicitly stated in this book, it is not intended to be a handbook of human factors or engineering psychology. Many of the references in the text provide a more comprehensive tabulation of such guidelines. Instead, we have organized the book directly from the perspective of human information processing. The chapters generally correspond to the flow of information as it is processed by a human being—from the senses, through the brain, to action—and are less clearly organized from the perspective of different system components or engineering concerns, such as displays, illumination, controls, computers, and keyboards. Furthermore, although the following pages contain recommendations for certain system design principles, many of these are based only on laboratory research and theory; they have not been tested in real-world systems.

It is our firm belief that a solid grasp of theory will provide a strong base from which the specific principles of good human factors can be more readily derived. Our intended audience, therefore, is (1) the student in psychology, who will begin to recognize the relevance to many areas in the real-world applications of the theoretical principles of psychology that he or she may have encountered in other courses; (2) the engineering student, who, while learning to design and build systems with which humans interact, will come to appreciate not only the nature of human limitations—the essence of human factors—but also
the theoretical principles of human performance and information processing underlying them; and (3) the actual practitioner in engineering psychology, human performance, and human factors engineering, who can understand the close cooperation that should exist between principles and theories of psychology and issues in system design.

The 13 chapters of the book span a wide range of human performance topics. Following the introduction in Chapter 1, in which engineering psychology is put into the broader framework of human factors and system design, Chapters 2 through 8 deal with perception, attention, cognition (both spatial and verbal), memory, learning, and decision making, emphasizing the potential applications of these areas of cognitive psychology. Chapters 9 through 12 cover the selection and execution of control actions, time-sharing, error, and stress, thereby addressing areas that are more traditionally associated with the engineering field. Finally, Chapter 13 is systems-oriented, discussing process control, complex systems and automation. This chapter shows how many of the principles explained in earlier chapters are pertinent to one specific application of rapidly growing importance.

Although the 13 chapters are interrelated (just as are the components of human information processing), we have constructed them in such a way that any chapter may be deleted from a course syllabus and still leave a coherent body. Thus, for example, a course on applied cognitive psychology might include Chapters 1 through 8, and another emphasizing more strictly engineering applications might include Chapters 1, 2, 4, 5, 6, 9, 10, 11, 12, and 13.

In addition to incorporating new experiments and studies where appropriate, we have made a number of changes in the third edition that set it apart from the second. First, most prominently, we have added a chapter, reflecting the growth of computer-based graphics systems, and their relevance for human performance issues in virtual environments and data visualization. Second, our chapters on decision making and automation and process control have been substantially rewritten, reflecting many of the changes in knowledge that our field has experienced since 1991 when the second edition was written. Third, throughout other chapters, substantial sections have been added describing important research developments in expertise, situation awareness, display integration, multimedia, the learning process and long term memory representation, planning and problem solving, voice control, and stress models.

In any project of this kind, one is indebted to numerous people for their assistance. For both of us the list includes several colleagues who have read and commented on various chapters, provided feedback on the second edition, and have stimulated our thinking. In addition to all acknowledgments in the first two editions (the text of which, of course, remains very much at the core of the current book), we would like to single out the extensive and helpful feedback on the second edition offered by Doug Gillan, Melody Carswell, Joe Goldberg, and Dan Fisk. We also thank countless students who, in one form or another, offered feedback regarding either good or bad elements of the second edition.

Christopher Wickens would like to acknowledge the contributions of faculty colleagues – in particular, Art Kramer and Gary Bradshaw who provided feedback on early drafts of chapters. He also acknowledges the contributions of four specific individuals who contributed to the development of his interest in engineering psychology: Delos Wickens, stimulated an early interest in experimental psychology; Dick Pew provided an introduction to academic research in engineering psychology and human performance;
Stan Roscoe pointed out the importance of good research applications to system design; and Emanuel Donchin continues to emphasize the importance of solid theoretical and empirical research. Also, it is impossible to do justice in crediting Karen Ayers' and Mary Welborn's contributions to this book. Without their hours of dedication at the word processor of a sometimes hostile computer, the project never would have succeeded. Chris's wife, Linda, was supportive during the hours of preparation for all three editions.

Justin Hollands also has many people to thank. Candace Schmidt tirelessly tracked down numerous references. The Psychology Department at the University of Idaho (especially Curt Braun, Brian Dyre, Sallie Gordon, Steve Meier, Philip Mohan, and Richard Reardon) provided useful comments and a supportive environment. Sharon McFadden at the Defence and Civil Institute of Environmental Medicine (Canada) provided time to put the finishing touches on the book. Lisa Fournier helped tackle the large literature on attention; Joel Warm did the same for vigilance; Stan Roscoe was helpful in providing valuable commentary on the history of the frequency-separated display. Justin also thanks his wife, Cindy, for her patience while this book was being written.

Christopher D. Wickens and Justin G. Hollands