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Abstract

Motor vehicle crashes (MVC) are a leading public health problem. Improving notification times and the ability to predict which crashes will
involve severe injuries may improve trauma system utilization. This study was undertaken to develop and validate a model to predict severe head
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njury following MVC using information readily incorporated into an automatic crash notification system.
A cross-sectional study with derivation and validation sets was performed. The cohort was drawn from drivers of vehicles involved in MVC

btained from the National Automotive Sampling System (NASS).
Independent multivariable predictors of severe head injury were identified. The model was able to stratify drivers according to their risk of severe

ead injury indicating its validity. The areas under the receiver-operating characteristic (ROC) curves were 0.7928 in the derivation set and 0.7940
n the validation set.

We have developed a prediction model for head injury in MVC. As the development of automatic crash notification systems improves, models
uch as this one will be necessary to permit triage of what would be an overwhelming increase in crash notifications to pre-hospital responders.

2006 Elsevier Ltd. All rights reserved.
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. Introduction

Approximately 42,000 people die per year in the United
tates as a result of motor vehicle crashes (MVC). An esti-
ated 2000–3000 of these deaths could be prevented through

mprovements in emergency medical system notification sim-
ly by reducing notification time to 1 min (Evanco, 1999).
n fact, the average time that elapses from crash to emer-
ency medical system (EMS) notification for fatal crashes
veraged 7 min for rural MVCs. More importantly, approxi-
ately 30% of rural crashes have more than a 60-min inter-

al between the crash event and arrival to hospital compared
o only 7% of urban crashes (Champion and Cushing, 1999).
hese delays in reaching medical care during the golden hour of

rauma resuscitation are crucial for the trauma patient’s survival

∗ Corresponding author. Tel.: +1 617 754 3257.
E-mail address: dtalmor@bidmc.harvard.edu (D. Talmor).

(Lerner and Moscati, 2001; Tallon, 2002; Pamerneckas et al.,
2003).

The currently available technology within motor vehicles
combined with satellite communication systems allows for
timely notification of EMS to crash events. With 27 million
crashes occurring annually, and a significant proportion of these
crashes being minor in terms of injury likelihood, an automated
system of crash notification would inundate the EMS systems
within minutes (Champion et al., 1999a,b). A mechanism to
identify crashes with a higher likelihood of injury would reduce
the need for EMS response and could assist with a more focused
deployment of resources to the crash scene. Furthermore, spe-
cific crash patterns may suggest a higher probability of specific
injuries, such as traumatic brain, thoracic, or abdominal injuries,
which could provide EMS providers with a tool to triage patients
more accurately.

Several major motor vehicle manufacturers have included
global positioning systems in their new car models, allowing
for accurate location of a vehicle in a crash event. Many of

001-4575/$ – see front matter © 2006 Elsevier Ltd. All rights reserved.
oi:10.1016/j.aap.2006.01.008

mailto:dtalmor@bidmc.harvard.edu
dx.doi.org/10.1016/j.aap.2006.01.008


768 D. Talmor et al. / Accident Analysis and Prevention 38 (2006) 767–771

these vehicles are also equipped with event data recording sys-
tems similar to those found in airplanes which provide detailed
information of the vehicle’s engine, restraint, airbag deploy-
ment, maneuvering, and braking status seconds before the crash
event. These two features provide the necessary elements for
an automatic crash notification system (ACNS) that could pro-
vide timely notification of the crash event as well as information
regarding crash severity and injury likelihood (Champion et al.,
1997, 1998, 1999a,b; Champion and Cushing, 1999).

We therefore utilized crash, vehicle, and occupant character-
istics to develop a probability model for traumatic brain injury.
Incorporation of such a model into automatic crash notifica-
tion systems would provide the added ability to appropriately
dispatch emergency personnel to those sites with a higher proba-
bility of injury. Furthermore, it would facilitate subsequent triage
decisions of patients from the scene to centers with the appro-
priate level of neurosurgical capabilities.

2. Methods

2.1. The NASS database

Data for this cross-sectional study were obtained from the
Crashworthiness Data System (CDS), a part of the National
Automotive Sampling System (National Highway Traffic Safety
Administration, 2003). The National Automotive Sampling Sys-
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der belt, lap belt, or lap and shoulder belt. Airbag deployment
was defined as any evidence of driver side airbag deployment.
Ejection, vehicle rollover, last driving maneuver performed prior
to impact (braking, steering away from the impact, or accelerat-
ing) as well as windshield, steering wheel or dashboard damage
were also assessed with respect to their ability to predict head
injury. The direction of the impact in relation to the car was
defined as front, rear, driver’s, or passenger’s side impact.

Injury severity is reported in the CDS database using
the Abbreviated Injury Scale (AIS) (Association for the
Advancement of Automotive Medicine, 1990). For the purposes
of this analysis a victim with a severe head injury was defined as
one with a head AIS of 2 or greater. This level of injury severity
was chosen as it corresponds to a level of injury that would likely
need neurosurgical consultation.

2.3. Statistical methods

Using the NASS sampling weights, a weighted logistic
regression model of the probability of severe head injury was
constructed from a derivation set comprising about a random
70% of the data and validated on the remaining 30%. Most of
the predictors had a substantial portion of missing data. These
data were missing in equal proportions in both the derivation
and the validation sets. Assuming data were missing at ran-
dom, we employed a 10-step conditional imputation procedure
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em is operated by the National Center for Statistics and Anal-
sis of the National Highway Traffic Safety Administration
NHTSA). The CDS is a nationwide annual probability sam-
le of approximately 5000 light passenger vehicles (passenger
ars, light trucks, vans, sport utility vehicles) that were involved
n police-reported tow-away collisions. For each CDS case,
rained investigators collect information on occupant, vehicle,
nd injury characteristics using three sources of data: official
ocuments (e.g., police traffic crash reports; and vehicle, high-
ay, and medical records); physical evidence (e.g., scene char-

cteristics and vehicle damage profile); and interviews. In this
nalysis, the 1993–2001 CDS data files were used. Only per-
ons sitting in the driver’s seat were included in the analysis.
bservations were weighted to reflect sampling probability and
ational characteristics.

.2. Risk factor definitions

This analysis includes only those variables that could realisti-
ally be collected with existing technology and transmitted into
n ACNS. These included variables related to the vehicle, its
ccupant, and the crash characteristics as recorded by the CDS
nvestigators.

Driver related variables included standard demographic char-
cteristics (e.g., age, gender) and the driver’s height and weight.
e excluded information regarding possible driver intoxication,

ecause we expect that legal considerations will prohibit the use
f vehicle technology that could obtain this information (e.g., a
ehicle breathalyzer).

Variables pertaining to occupant safety and vehicle character-
stics were obtained. Seat belt use was defined as the use of shoul-
o fill in the missing values of the following variables: height,
eight, seatbelt use, speed, braking status, steering status, accel-

rating status, eject status, rollover status, vehicle curb weight,
irbag deployment status, windshield impact, frontal impact,
anel damage, steering wheel damage, driver side impact, on
peed, braking, steering, accelerating, and steering wheel dam-
ge. Imputation steps were performed using Royston’s Stata-
ased code uvis and mvis, an implementation of the MICE
ethod of multiple imputation (Royston, 2004; van Buuren et

l., 2004). A single imputed dataset was constructed on 500
andomly chosen subsets, each approximately 1/20th the size
f the derivation set. For each of the 500 bootstrap iterations,
oint estimates of covariates’ odds ratios were obtained from the
stimated coefficients of univariable logistic regression models,
eighted according to the design of the NASS survey. The 95%

onfidence intervals were estimated from the 2.5th and 97.5th
ercentiles of the bootstrap results.

All statistically significant univariable predictors were then
ncorporated into one multivariable weighted model. This inter-

ediate model was trimmed to the final model by retaining
nly the three predictors (seatbelt use, eject, delta speed) that
emained significant.

We tested the performance of the final multivariable model
rospectively using the validation set. Discriminatory perfor-
ance of the model was internally validated, by comparing the

eceiver-operating characteristic (ROC) curve analysis in the
erivation set with that of the validation set. ROC curves and
reas under the curves for each set were determined using counts
f non-missing records in each set and were not weighted. Anal-
sis was performed using STATA Version 8.0 (Stata Corp LP,
ollege Station, TX).
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Table 1
Characteristics of the study population

Characteristic Derivation set
(n = 39,441)

Validation set
(n = 17,025)

Male no. (%) 23636 (59.9%) 10303 (60.5%)
Age (years) 36.7 36.8
Height (cm) 172 171.9
Weight (kg) 76 75.9
Severe head injury 4464 (11.3%) 1894 (11.1%)

Year of accident—no. (%)
1993 4573 (11.6%) 2060 (12.1%)
1994 4185 (10.6%) 1876 (11%)
1995 4520 (11.5%) 1929 (11.3%)
1996 4711 (11.9%) 1893 (11.1%)
1997 4510 (11.4%) 1888 (11.1%)
1998 4411 (11.2%) 1964 (11.5%)
1999 4200 (10.7%) 1882 (11.1%)
2000 4290 (10.9%) 1832 (10.8%)
2001 4041 (10.3%) 1701 (10%)

3. Results

The CDS database for the years 1993–2001 included 56,466
drivers. This is equivalent to a population of 28,877,696 drivers
nationwide. Of these, 6358 sustained a head injury associated
with an AIS ≥ 2. The dataset used to develop the model includes
39,441 drivers, with 11.3% sustaining a severe head injury. A
further 17,028 drivers were allocated to the validation set, 11.1%
of whom had severe head injuries (Table 1).

3.1. Univariable analysis

A total of 21 passenger and vehicle variables were tested for
association with severe head injury and the results presented
in Table 2. Of these only four were found to be significantly
associated with a severe head injury (P < 0.05), since none of
the 95% confidence intervals contained unity. These included
seat belt use and crash characteristics (rollover during the acci-
dent, driver ejection from the vehicle and the change in velocity
incurred during the crash).

3.2. Mulitivariable analysis

All factors found to be significant in the univariate analysis
were then entered as a group into a multivariable logistic regres-
sion model. Variables with a P < 0.05 were retained. The result
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Table 2
Univariable correlates of severe head injury in the derivation set

Covariate Odds ratio
estimate

95% confidence
interval

P-value

Driver related variables
Male 1.39 0.30, 3.53 NS
Age (years) 1.00 0.98, 1.06 NS
Height (cm) 1.02 0.98, 1.16 NS
Weight (kg) 1.01 0.99, 1.07 NS

Vehicle related variables
Curb weight (kg) 1.00 0.99, 1.02 NS
Seat belt used 0.21 0.09, 0.81 <0.05
Airbag deployed 0.87 0.28, 2.15 NS

Accident related variables
Rollover 3.67 1.25, 23.00 <0.05
Ejection 17.79 5.62, 216.74 <0.05
Windshield damage 1.25 0.51, 3.04 NS
Panel damage 1.13 0.44, 5.02 NS
Steering wheel damage 1.01 0.36, 8.25 NS
Change in vehicle velocity (km/h) 1.03 1.01, 1.11 <0.05

Last maneuver prior to accident
Braking 0.63 0.21, 1.83 NS
Steering 1.25 0.41, 3.49 NS
Accelerating 0.40 0.02, 5.77 NS

Direction of impact
Frontal impact 1.13 0.46, 3.14 NS
Rear end impact 0.90 0.25, 4.65 NS
Driver’s side impact 0.76 0.21, 2.64 NS
Passenger’s side impact 0.74 0.21, 2.85 NS

Table 3
Predictors of severe head injury identified by multivariable analysis

Covariate Adjusted odds
ratio estimate

95% confidence
interval

Seat belt used 0.26 0.10, 0.66
Ejection 9.36 2.67, 65.85
Change in vehicle velocity (km) 1.03 1.00, 1.08

Table 4
Performance of the prediction rule in the derivation and validation sets

Predicted
risk (%)

Derivation set severe
head injury (%)

Validation set severe
head injury (%)

0–10 6.62 6.18
10–30 27.93 28.83
30–100 47.20 43.82

areas under the curves were 0.7928 in the derivation set and
0.7940 in the validation set (Fig. 1). This suggests only minimal
degradation in performance of the model in the validation set.

4. Discussion

Automated crash notification systems reduce the time from
the crash event to hospital arrival, primarily by reducing time
between crash occurrence and notification of emergency medical
services. With such a system EMS is notified an average of 44 s
after the crash occurs (National Highway Safety Administration,
f this regression is the model presented in Table 3. The final
odel included seat belt use, driver ejection from the vehicle

nd the change in velocity of the vehicle during the crash.

.3. Validation of the model

Using the validation set, the prediction model was able to
tratify drivers according to their risk of severe head injury
Table 4). The risk of traumatic brain injury was arbitrarily clas-
ified as low (<10%), moderate (10–30%), and high (>30%).

When receiver-operating characteristic curves for the model
n the derivation and in the validation sets were compared, the
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Fig. 1. Comparison of the receiver-operating characteristic (ROC) curves for the
derivation set and the validation set. The area under the curve was 0.7928 for the
derivation set and 0.7940 for the validation set. This suggests little degradation
in the models performance when used for prospective testing.

2001), almost twice as fast as the 82 s average notification time
in Connecticut, and significantly faster than the 18 min average
notification time in South Carolina (Akella et al., 2003). Shorter
notification times result in fewer fatalities, particularly in rural
areas where the majority of crashes in the United States occur
(Champion and Cushing, 1999; Funke et al., 2000).

In addition to providing a means of reduced notification time,
the ACNS must determine which crashes should trigger EMS
notification. Dispatch of EMS for minor collisions in which no
injury occurs would overwhelm the system and divert resources
needed to care for the seriously injured. Under-triage is equally
problematic, when EMS is not notified of crashes with seriously
injured or potentially seriously injured occupants.

In 2001, the National Highway Traffic Safety Administra-
tion (NHTSA) published the results of an initiative to create
and operate an ACNS on a demonstration basis in a rural area.
The crash characteristics included in the model were rollover,
change in velocity, and direction of force. In the initial field trial,
change in velocity was detected with 87% accuracy, principal
direction of force with 100% accuracy, and rollover status with

93% accuracy. The outcome variable assessed was the proba-
bility of any body region to sustain a significant injury (AIS
score of 2 or greater). We chose to focus upon traumatic brain
injuries specifically as an initial step to refine the original work
done by NHTSA. With more specific crash-injury profiles the
ACNS technology can improve its efficiency in terms of triage
and identify those patients with the most severe life-threatening
injuries. Our study demonstrates that the likelihood of traumatic
brain injury can be predicted with reasonable accuracy based
upon variables that can and should be measured during the crash
event.

We chose to test the ability of this model to predict trau-
matic brain injury using sensitivity and specificity measure-
ments which are summarized by receiver-operating curves. This
approach was utilized since triage tools are akin to screening
tests for a disease. Generally, the accuracy of a screening test
is best measured by such an approach. In further validating the
model (Table 4) we arbitrarily categorized the risk into low to
high categories. This is not to imply that these categories be uti-
lized in determining subsequent triage decisions as other factors
such as geographical location of adequate facilities must also be
considered.

Currently, crash characteristics such as velocity of greater
than 20 mph and intrusion have added little to our ability to
accurately triage patients in terms of injury severity, and have
actually been found to reduce specificity with little improvement
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n sensitivity (Henry et al., 1996a,b). One problem with using
echanism as a triage tool is that it may lead to considerable

ver triage of patients. Using event data recording systems will
emove some of the inaccuracies related to the subjective esti-
ates of crash severity and may, in turn, improve the correlation

etween the event and the likelihood of injury.
Choosing a lower threshold for EMS deployment and a higher

hreshold for triage to a level one trauma center would provide
mechanism to ensure that patients with a low potential for

raumatic brain injury are at least brought to a level 3 or 4 trauma
enter while those at higher risk would be brought to a higher
evel of care.

In reviewing the factors found to be predictive of head injury
eat belt use appear to be protective, while ejection from the
ehicle and an increasing velocity of the crash both are predictive
f a severe head injury. These results are consistent with previous
tudies. This reinforces the validity of our findings.

A study should be interpreted in the context of its limita-
ions. Several limitations of this study must be addressed. First,
he NASS dataset has a significant amount of missing data. This
as particularly important with respect to the velocity of crashes.
he amount of missing data was particularly significant for the
hange in velocity incurred during the crash. For this variable
9.9% of data was missing. We used imputation to estimate the
alues of the missing data. This method allows us utilize the full
ower of the NASS dataset however it increases the uncertainty
bout the odds ratio estimates. By randomly selecting our deriva-
ion and validation sets we ensured that data was missing in equal
roportions in both sets. ACNS are increasingly prevalent. Data
ollected through these systems will allow the prospective vali-
ation of our prediction model on complete datasets.
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Misclassification with any retrospectively analyzed dataset
is another possible limitation; however, to significantly alter the
model’s accuracy, there would have to be differential misclassi-
fication of those confounders with respect to head injury. Since
the data coders for NASS perform their crash variable coding
independent of injury coding, there is little reason to believe
that crash related variables would be coded differentially with
respect to head injury. That is, any misclassification of crash
related variables or injury severity would occur with equal like-
lihood, and therefore would not affect the overall estimates as
to the likelihood of injury.

Application of this probability model requires intact global
satellite communication between the vehicle and the emergency
medical dispatch unit. The three variables we identified as sig-
nificant predictors are not necessarily the variables currently
examined by vehicle surveillance systems. The findings of this
study should be utilized to guide the development of this tech-
nology so as to improve medical emergency resource utilization.
Finally, the ability to detect and notify EMS of a crash event is
only the first part in improving survival from crashes. Treating
the injured rapidly and appropriately requires an intact trauma
care system to provide efficient trauma assessment and care. In
the absence of such a system, the maximum efficacy of an ACNS
will not be attained.

From a health care standpoint, there must be no confusion
about this technology. It is clear that automatic crash notification
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